Категории
Мы рады Вас приветствовать на Форуме друзей

Сейчас: 19:57 15/12/2017
.
Меню пользователя
Привет,Гость!

Войти и проверить ЛC

Логин:

Пароль:

Запомнить

Вход 

Регистрация

Меню сайта
Главная Главная
Обменник Обменник
Статьи Статьи
Форум Форум
онлайн игры Онлайн игры
Обсуждение программ Галерея
Обсуждение программ Видео
Правила сайта Правила сайта
Новости RU-нета Новости рунета
Команда сайта Команда сайта
Пользователи Пользователи
Репутации Репутация
Поиск Поиск
Наши друзья Друзья сайта
Наши друзья смарт-версия

Сегодня

на правах рекламы


Авария на Чернобыльской АЭС .

 
Новая тема   Ответить    Категории -> Новости RUнета
Автор Сообщение
kust782 [ЛС] [>>]
Администратор


статус: Йа ацкей Коринь!!!!!!!
Репутация:
Сообщения: 9256

СообщениеДобавлено: Пн Окт 27, 2008 07:17   Цитата

Давайте вспомним , разберем как все это произошло! Здесь будем выкладывать интересные заметки , вырезки и просто рассуждать о этой аварии и ее последствиях.
kust782 [ЛС] [>>]
Администратор


статус: Йа ацкей Коринь!!!!!!!
Репутация:
Сообщения: 9256

СообщениеДобавлено: Пн Окт 27, 2008 07:35   Цитата

Версии аварии
За прошедшее десятилетие были сделаны многочисленные попытки разобраться с сущностью Чернобыльской аварии и причинами, приведшими к ней. Законченной и экспериментально подтвержденной версии Чернобыльской аварии до настоящего времени не создано.
Версии возникновения и развития аварии.
Объективное изучение событий, связанных с возникновением и развитием аварии на 4-м энергоблоке Чернобыльской АЭС, началось 27-28 апреля 1986г., когда специалистам стала доступна информация об основных параметрах работы 4-го энергоблока перед аварией и в ее первой фазе, зарегистрированная системами измерения до момента их разрушения.
Версия Межведомственной комиссии
Версия, разработанная на месте происшествия, состояла в том, что авария произошла вследствие запаривания технологических каналов активной зоны из-за срыва циркуляции в контуре МПЦ. Срыв циркуляции произошел из-за несоответствия расхода питательной воды и расхода теплоносителя в контуре МПЦ. Последующий углубленный анализ теплогидравлического режима работы ГЦН, выполненный в конце мая 1986 года разработчиком ГЦН, не подтвердил предположения о срыве и кавитации ГЦН. Было установлено, что наименьший запас до кавитации имел место за 40 секунд до аварии, но был выше того, при котором мог произойти срыв ГЦН.
Версия Минэнерго СССР на основе расчетов ВНИИАЭС
В конце мая 1986 г. после изучения имевшихся данных и проведения расчетов во Всесоюзном НИИ атомных электростанций (ВНИИАЭС) группа специалистов Минэнерго СССР сделала дополнения к акту, в котором причинами аварии были названы:
- принципиально неверная конструкция стержней СУЗ
- положительный паровой и быстрый мощностной коэффициент реактивности
- большой расход теплоносителя при малом расходе питательной воды
- нарушение персоналом регламентного значения оперативного запаса реактивности (ОЗР), малый уровень мощности
- недостаточность средств защиты и оперативной информации для персонала
- отсутствие указаний в проекте и технологическом регламенте об опасности нарушения установленного уровня ОЗР.
Версия Межведомственного НТС.
На заседаниях Межведомственного научно-технического совета (НТС), проведенных 02.06.86 и 17.06.86, результатам расчетов ВНИИАЭС, продемонстрировавшим, что недостатки конструкции реактора в значительной мере явились причиной катастрофы, не было уделено серьезного внимания. По существу, все причины аварии были сведены исключительно к ошибкам в действиях персонала.
Версия экспертов СССР к сессии МАГАТЭ
В июле 1986 г. в ходе подготовки к специальной сессии МАГАТЭ был выполнен первый расчетный анализ аварии на упрощенной схеме модели. В докладе, предоставленном советскими экспертами на этой сессии в августе 1986 г., первопричиной аварии было названо "крайне маловероятное сочетание нарушений порядка и режима эксплуатации, допущенных персоналом энергоблока". Отмечалось также, что "катастрофические размеры авария приобрела в связи с тем, что реактор был приведен персоналом в такое нерегламентное состояние, в котором существенно усилилось влияние положительного коэффициента реактивности на рост мощности". В этом же докладе были указаны следующие допущенные нарушения:
- снижение оперативного запаса реактивности существенно ниже допустимой величины;
- подключение к реактору всех ГЦН с превышением расхода по отдельным ГЦН, установленного регламентом;
- блокировка защиты реактора по сигналу остановки двух ТГ;
- блокировка защит реактора по уровню воды и давлению пара в барабане-сепараторе ;
- отключение системы защиты реактора от МПА (максимальной проектной аварии) (отключение САОР).
Версия института атомной энергии (ИАЭ) им. Курчатова
К октябрю 1986 г. в ИАЭ был проведен анализ версий, объяснявших взрывной характер аварии:
1. Взрыв водорода в бассейне -барботере
2. Взрыв водорода в нижнем баке контура охлаждения СУЗ
3. Диверсия (взрыв заряда с разрушением трубопроводов контура циркуляции)
4. Разрыв напорного коллектора ГЦН или раздаточного группового коллектора
5. Разрыв барабана-сепаратора или пароводяных коммуникаций
6. Эффект положительного выбега реактивности от вытеснителей стержней СУЗ
7. Неисправность автоматического регулятора
8. Грубая ошибка оператора при управлении стержнями ручного регулирования
9. Кавитация ГЦН, приводящая к подаче пароводяной смеси в технологические каналы
10. Кавитация на дроссельно-регулирующих клапанах
11. Захват пара из барабана-сепаратора в опускные турбоприводы
12. Пароциркониевая реакция и взрыв водорода в активной зоне
13. Попадание в реактор сжатого газа из баллонов САОР
Анализ был построен на выявлении противоречий между ожидаемым эффектом рассматриваемой версии аварии с имеющимися объективными данными, зафиксированными программой ДРЕГ. В результате проведенных исследований стало очевидно, что единственной гипотезой, не противоречащей объективным данным, является версия, связанная с эффектом вытеснителей стержней СУЗ.
Версия первой международной рабочей группы по тяжелым авариям и их последствиям.
В октябре-ноябре 1989 г. различные аспекты чернобыльской аварии были детально обсуждены на первой международной рабочей группе по тяжелым авариям и их последствиям (Дагомыс, СССР). Причиной аварии была единодушно признана '"нестабильность реактора, вызванная как недостатками конструкции реактора, так и режимом его работы". Катастрофических масштабов авария достигла из-за положительного парового эффекта реактивности и недостатков конструкции поглощающих стержней. Действия персонала перед аварией были таковы, что способствовали проявлению этих недостатков реактора. Нарушив некоторые регламентные ограничения (по величине ОЗР и расходу теплоносителя), персонал практически вывел реактор в область "белого пятна", где поведение реактора не было изучено и оказалось ядерно-неустойчивым.
kust782 [ЛС] [>>]
Администратор


статус: Йа ацкей Коринь!!!!!!!
Репутация:
Сообщения: 9256

СообщениеДобавлено: Пн Окт 27, 2008 07:38   Цитата

История образования Чернобыльской зоны отчуждения и безусловного (обязательного) отселения (ЧЗО и Б(О)О)
На этой странице попытаемся познакомить Вас с причинами, которые обусловили возникновение наибольшей в истории использования атомной энергетики аварии, которая в последствии оказажет глобальное влияние на экологию планеты. Также попытаемся восстановить, в хронологическом порядке, события той апрельской ночи 1986 года, которая для значительной части населения СССР внесла в судьбы понятие "до и после Чернобыля". Понятно, что на сегодняшний день уже много разного (хорошего и плохого) было сказано и написано о ликвидации последствий аварии. Но и сейчас, на наш взгляд, в читателя не пропал интерес к событиям происходившим на 4-м блоке ЧАЭС после 26 апреля 1986 года. Поэтому, избегая подробностей, представим наиболее основные этапы ликвидации последствий аварии. На весь цитируемый материал, с целью соблюдения авторских прав, даны ссылки. Благодарим за интерес к данной теме. Буду рад Вашим предложениям или замечаниям к представленному материалу.
Причины аварии
Авария произошла во время проведения испытаний на одном из турбогенераторов при нормальной плановой остановке реактора 4-го блока. Цель испытаний - проверка способности турбогенератора вырабатывать электроэнергию в течение краткосрочного периода в случае обесточивания станции, пока электроэнергия не начнет поступать от аварийных резервных дизель генераторов. Процедура испытаний были составлены неудовлетворительно с точки зрения безопасности, а серьезные нарушения регламента эксплуатации привели к тому, что реактор работал на низкой мощности 200 МВт (тепл.) в таких условиях теплообмена и охлаждения, которые не могли быть стабилизированы с помощью системы ручного регулирования. Такой режим работы, особенно исходя из конструкционных особенностей реакторов типа РБМК, является достаточно опасным. В это же время операторы преднамеренно и в нарушение регламента вывели большею часть стержней СУЗ из активной зоны и отключили несколько важных систем безопасности. (более подробно смотри здесь - навести Собатовича) В результате последующих событий в активной зоне образовались значительные объемы пара, что увеличило положительную реактивность. Что привело к стремительному росту мощности. Персоналом была предпринята попытка остановить реактор вручную, в то время как автоматическая система быстрой остановки реактора были ограничены, поскольку почти все регулирующие стержни были полностью выведены из активной зоны. Постоянное добавление реактивности из-за образования паровых объемов привело к сверхбыстрому скачку критичности. Согласно расчетам. Первый пик мощности в сто раз превысил номинальный уровень мощности за четыре секунды! Высвобождение энергии из топлива в результате скачка мощности привело к внезапному разрушению топлива на мельчайшие частицы. Мелкие горячие топливные частицы (возможно, также испарившееся топливо) вызвали паровой взрыв.
В результате высвобождения энергии была сдвинута 1000-тонная крышка реактора, что привело к обрыву всех каналов теплоносителя по обе стороны крышки. Спустя две-три секунды раздался второй взрыв, из поврежденного здания реактора были выброшены обломки горячих материалов. Повреждение реактора вызвало приток воздуха, что в дальнейшем привело к возгоранию графита. Через образовавшееся отверстие, вернее сказать провал, выбросило бетон, графит и другие осколки, обнажилась активная зона реактора. Дым и пар с большим количеством радиоактивного материала образовали "горячее" облако, поднявшееся на высоту до двух километров, которое в последствии прошло над западными районами СССР в направлении Восточной и Западной Европы и с гораздо меньшей плотностью- над всем северным полушарием. Более тяжелые осколки и частицы упали вблизи площадки станции, а легкие частицы отнесло на запад и на север от станции. Где они выпали в прилегающих районах и в соседних республиках.
В течение первого дня после аварии радиоактивное облако над станцией достигло высоты 1800 м. На следующий день максимальная высота составляла 1200м, но большая часть выбрасываемых материалов поднялась не выше 600м. С третьего дня после аварии радиоактивное облако не поднималось выше 600 м. (Летучие элементы (йод и цезий) были обнаружены и на больших высотах (6-9 км), а их следы также и в нижних слоях атмосферы. Более тяжелые элементы (церий, цирконий, нептуний и стронций) имели значение только для местных выпадений на территории СССР.) В момент аварии поверхностные ветры были слабыми и переменными, однако на высоте 1500 м дул юго-восточный ветер, скорость которого составляла 8-10 мс. Материалы, достигшие этой высоты ветер перенес в направлении Финляндии и Швеции, где 27 апреля впервые были обнаружены повышенные уровны радиации за пределами СССР. Московское телевидение сообщило об аварии вечером в понедельник, 28 апреля.
Ликвидация последствий.
Сразу после взрыва на крыше примыкающего к блоку машинного зала начался пожар. Огонь, облака пара и пыли заполнили здание четвертого блока.
Оповещение о пожаре поступило в пожарные подразделения и через несколько минут появились первые пожарные АЭС. Никто из пожарных не был обучен борьбе с пожаром в условиях загрязненности радиоактивными материалами. Несколько пожарных вместе с персоналом станции начали тушить пожар в машинном зале и в здании четвертого блока, стали тушить куски горящего графита из взорвавшейся активной зоны.
К рассвету в субботу пожар был потушен полностью, за исключением горящего графита в активной зоне. Спасатели, пожарные и эксплуатационный персонал в целом не представляли себе, насколько серьезен был риск облучения. Имевшееся дозиметрическое оборудование не позволяло измерить столь высокие уровни радиации, которые в некоторых местах очевидно превышали 100 Гр/ч. Персонал станции не имел дозиметров, которые позволили бы измерять полученную им дозу, и многие были серьезно облучены.
Менее чем через час после начала аварии был отмечен первый случай острой лучевой болезни. У 203человек из присутствовавших рано утром 26 апреля на площадке реактора были обнаружены клинические проявления радиационного облучения или ожогов. Разрушенная активная зона была связана с атмосферой, и было решено закрыть воронку теплопоглощающими и фильтрующими материалами. С 27апреля по 10 мая летчики ВВС совершили сотни опасных полетов над активной зоной, сбрасывая с вертолетов тонны бора, свинца, глины, песка и доломита ( каждый из материалов использовался для конкретных целей: бор - для поглощения нейтронов и предотвращения возможности повторного выхода реактора на критичность; свинец - для поглощения тепла и в качестве защитного экрана; глина и песок -для выделения углекислого газа, который ограничивал поступление кислорода к горящему графиту). Возрастала обеспокоенность по поводу возможного попадания расплавленного топлива в воду бассейнов-барботеров, расположенных под активной зоной, что привело бы к взрыву пара и дополнительным выбросам. В экстремально сложных условиях и в обстановке радиоактивного загрязнения окружающей среды группе добровольцев из числа военных удалось установить временный трубопровод для откачки воды, которая заполнила обычно сухой второй уровень. Оперативная группа установила также бетонную плиту под разрушенным реактором, с тем чтобы не допустить повреждения основания реактора расплавленным топливом и его протекания на землю.
kust782 [ЛС] [>>]
Администратор


статус: Йа ацкей Коринь!!!!!!!
Репутация:
Сообщения: 9256

СообщениеДобавлено: Пн Окт 27, 2008 07:49   Цитата

Версии аварии: мемуары участника и мнение эксперта. Часть 2
2. Кратко о причинах и развитии аварии на 4-м блоке ЧАЭС
Представлены основные, на взгляд автора, качественные характеристики активной зоны реактора РБМК 4-го блока Чернобыльской АЭС, которые стали причиной катастрофического взрыва реактора. Рассмотрена последовательность развития аварии, обусловленная на начальном этапе нарушением требований Регламента. На основе рассмотрения выброшенного из активной зоны во время взрыва фрагмента циркониевой трубы технологического канала, заполненного твэлами, показана принципиальная невозможность версии (высказанной в статье УДК 621.039.566, журнал «Атомная энергия», т. 100, вып. 4, апрель 2006г., с. 243-258) подброса всей активной зоны ИЗ шахты реактора с последующим взрывом и выбросом всего «распылённого» топлива и замедлителя за пределы шахты реактора.
Эта статья подготовлена по материалам, опубликованным в газете «Курчатовец» РНЦ «Курчатовский институт», № 1-2, 2005 г., № 7-8, 2005 г.,№ 7-8, 2006 г. Читатели с интересом отнеслись к публикации. Один из них предложил сжать материал и направить в журнал «Атомная энергия». Что я и сделал, надеясь, что редакция журнала проявит интерес и ознакомит более широкий круг читателей журнала с мнением автора о чернобыльской трагедии, - хотя, следует признать, позиция автора в принципе не нова.
В «Атомной энергии» статья так и не была опубликована. Кажется, её там обсуждали. Категорически против публикации был Е. О. Адамов.
2.1 Несколько слов об особенностях конструкции реактора
Сначала немного истории и об особенностях конструкции реактора РБМК (конечно, того времени, т.е. более чем двадцатилетней давности).
Как известно, прототипом реактора РБМК стал промышленный реактор -наработчик оружейного плутония. Два таких реактора недалеко от Томска и один - недалеко от Красноярска до сих пор надежно работают (вот уже больше 40 лет) и производят тепло и электроэнергию. Остановлены они будут, скорее всего, после пуска замещающих мощностей по коммунальному теплоснабжению.
Так вот, в технических условиях на промышленный реактор много лет назад было записано, что стержни аварийной защиты должны останавливать реактор за 2-3 секунды. Это требование на промышленных реакторах практически выполнено с момента их строительства, стержни аварийной защиты полностью вводятся в активную зону за время около 5-6 секунд, а «глушится» реактор к 3-ей секунде, когда стержни примерно наполовину входят в активную зону реактора. Недавно в архиве прочитал Проектное техническое задание на первый промышленный реактор, сентябрь 1946 г. (реактор А, ласково его звали «Аннушкой»; пущен в июне 1948 г, остановлен в 1987 г.). Задание подписано И.В. Курчатовым и В.И. Меркиным. В нём подчёркнуто требование: «Время заполнения аварийных каналов поглотителем должно быть минимальным, желательно, чтобы это время не превышало 0,5 секунды». Речь идёт о гидравлических каналах аварийной защиты, которые должны были заполняться поглощающей нейтроны жидкостью. Требование жёсткое и вряд ли выполнимое. Но всё же... В другом документе «Техническое задание на составление проекта установки АД», ноябрь 1949 г, подчёркнуто, что «время заполнения аварийных каналов поглотителем должно быть минимальным и не превышать 1,5 секунды». Здесь говорится о стержнях-поглотителях аварийной защиты. Утверждено Техническое задание академиком А.П. Александровым.
В технических условиях на реактор РБМК-1000 было записано такое же требование, как и на промышленные реакторы. Однако в процессе работы над проектом реактора оказалось, что осуществить ускоренный ввод стержней СУЗ в активную зону за 2-3 сек трудно.
В промышленных реакторах контур охлаждения стрежней СУЗ разомкнут, охлаждающая вода, пройдя реактор, не возвращается обратно в контур, поэтому в нём сравнительно легко организовать охлаждение каналов СУЗ путём так называемого плёночного охлаждения, при котором стержни под собственным весом «падают» практически в пустой канал, так как вода стекает в виде плёнки по поверхности трубы. В реакторе РБМК контур замкнут, каналы СУЗ заполнены водой, плёночное охлаждение организовать затруднительно, поэтому стержни СУЗ вводятся принудительно и с меньшей скоростью. Конструкторы пошли по упрощённому пути: физический «вес» стержней, т.е. способность поглощать тепловые нейтроны, увеличили, а скорость принудительного ввода уменьшили так, что в активную зону стержни вводились за 18 секунд, т.е. почти в три-четыре раза медленнее, чем в промышленных реакторах. Для группы стержней аварийной защиты замедление ещё большее, почти в 5 раз. Когда об этой особенности реактора услышали американцы в Вене в МАГАТЭ в 1986 году из уст В. А. Легасова (он рассказывал о Чернобыльской катастрофе), то очень удивились, заявив, что еще в 1953 году ими было выдвинуто категорическое требование к скорости ввода аварийных стержней в 2-3 секунды, чтобы исключить любую возможность неуправляемого разгона реактора на мгновенных нейтронах (это требование на промышленных реакторах реализовано с момента их проектирования и пуска, т.е. с 1947-48 г.
Ещё об одной роковой особенности аварийной защиты реактора. Однажды в середине 70-х годов в институте Курчатова обсуждался проект строительных конструкций Чернобыльской АЭС. Речь зашла о бетонных конструкциях подреакторного помещения: уж слишком оно показалось глубоким. В результате обсуждения было принято предложение сэкономить бетон и уменьшить глубину подреакторного пространства почти на 2 метра. В результате пришлось уменьшить длину вытеснителей стержней СУЗ до 4,5м, так как полная их длина (7 м) уже не помещалась в подреакторном пространстве, если стержни СУЗ введены в активную зону на всю их длину. Решение было обоснованным: вытеснители стержней СУЗ были введены в проект для экономии нейтронов, а эффективность их оптимальна, если вытеснители (в случае вывода поглощающих стержней полностью из активной зоны) располагаются в центральной её части. Верхние и нижние края вытеснителей, располагаясь на периферии, неэффективны, так как там мало тепловых нейтронов. (В скобках поясним, что вытеснители выполнены из графита в оболочке из сплава алюминия. Графит значительно меньше поглощает тепловые нейтроны, чем вода, поэтому вытеснители призваны вытеснять воду из каналов СУЗ, когда поглощающие стержни выведены в верхнее положение и не участвуют в регулировании мощности реактора. Их задача -экономить тепловые нейтроны). Это решение привело к тому, что в нижней части активной зоны в каналах СУЗ оказался столб воды около 1,2 м высотой, когда поглощающая часть стержней СУЗ выведена из активной зоны. Такая ситуация часто возникает в переходных режимах на всех реакторах, особенно после кратковременных остановок, или перевода реактора РБМК с б?льшей мощности на меньшую. В это время снижается запас реактивности вследствие «отравления» активной зоны ксеноном, стержни из реактора выводятся в верхнее положение. Чтобы поддержать мощность на меньшем уровне или вывести её на необходимый уровень при пуске, нужно уменьшить «бесполезное» поглощение тепловых нейтронов, что и делается путем извлечения стержней СУЗ из активной зоны.
Третья особенность реактора РБМК. Во время проектирования реактора, да и в последующие годы во время их работы уже в стационарном режиме перегрузок, не знали с достаточной уверенностью (не было расчетных программ и условий для надёжных реакторных экспериментов), каковы будут изменения реактивности реактора, если в рабочих каналах в случае роста мощности возрастёт количество пара, т.е. уменьшится количество «плотной» воды, поглощающая способность которой значительно выше «бесплотного» пара (этот эффект назван «плотностным эффектом реактивности»). Тогда считалось, что плотностной (или паровой) эффект реактивности если и положителен, то только на этапе среднего изменения плотности теплоносителя, а когда вода в канале полностью заменяется паром - эффект отрицателен, т.е. при замене воды (или пароводяной смеси) на пар мощность реактора должна снижаться (при положительном плотностном эффекте реактивности мощность реактора возрастает с ростом количества пара в активной зоне, соответственно «подхлёстывается» и рост мощности реактора). Как оказалось впоследствии в результате расчётов по новым программам, замена воды паром вызывала резкий положительный скачок реактивности (до 6 b), причём такой величины, что мощность реактора должна была возрастать неуправляемо на «мгновенных» нейтронах за несколько секунд до значений, превышающих начальную в десятки и сотни раз (пока не развалятся твэлы и не изменится состав и геометрия активной зоны: гомогенизация топлива в трубе канала, а затем и распространение топлива по кладке после разрыва труб каналов снижают реактивность системы, что приводит к прекращению цепной реакции).
Есть ещё один эффект, значение которого для устойчивой работы реактора не было достаточно осознано - это «двугорбость» распределения энерговыделения по высоте активной зоны (эффект бактриана, двугорбого верблюда). Двугорбость распределения энерговыделения связана с б?льшим выгоранием топлива в центре зоны по сравнению с верхней и нижней периферией (в условиях стационарного режима перегрузок топлива, когда в реакторе находятся тепловыделяющие сборки разного выгорания топлива).
Вот четыре фактора, которые в соответствии с расчётами привели к взрыву реактора такого масштаба, о возможности которого разработчики того времени практически не знали и не догадывались.
Тут следует сказать, что кое-что всё же знали по расчётам и экспериментам. Ещё за три года до аварии расчётом было показано: если все стержни СУЗ, расположенные в верхнем положении, т.е. когда поглощающая (активная) их часть выведена из активной зоны, будут вводиться в активную зону, то в первые секунды действия стержней вследствие вытеснения воды из нижней части каналов СУЗ графитовыми вытеснителями возможен кратковременный всплеск мощности реактора до десяти раз от начальной (текущей) мощности. Возможный рост реактивности реактора вследствие замещения воды в канале паром с ростом мощности в данном расчёте не рассматривался.
Эксперименты со стержнями СУЗ непосредственно на реакторе также показали, что при сбросе группы стержней с верхнего положения возникает кратковременный всплеск реактивности.
kust782 [ЛС] [>>]
Администратор


статус: Йа ацкей Коринь!!!!!!!
Репутация:
Сообщения: 9256

СообщениеДобавлено: Пн Окт 27, 2008 07:56   Цитата

Такие результаты были получены при пуске реакторов и на ЧАЭС, и на Игналинской АЭС с реактором РБМК-1500.
В связи с этим и по другим причинам, обусловленным устойчивостью работы реактора, в Технологическом регламенте существовал пункт, категорически требующий «глушить» мощность реактора, если количество стержней СУЗ в активной зоне достигает пятнадцати. В этом случае, в соответствии с экспериментами на реакторе и расчётами, поглощающая часть стрежней СУЗ, находящаяся внутри активной зоны, по мере их дальнейшего ввода в активную зону снижала реактивность реактора и приводила к его остановке.
За три года до аварии были приняты решения о переделке стрежней СУЗ с целью исключить «эффект вытеснителей». Например, сдвинуть вытеснители в нижнюю часть активной зоны из середины. Обсуждалась также возможность введения стержней УСП (укороченные стержни-поглотители, которые вводятся в а. з. снизу для коррекции осевого поля энерговыделения) вместе со стержнями аварийной защиты. Однако воз двигался медленно. Ситуация назревала. О ней не догадывались, уповая на силу регламента, основного закона реакторщиков-эксплуатационников (операторов реактора).
2.2 Кратко о развитии аварии
Вот как развивались события 26апреля 1986 года. Во время эксперимента с отключением турбин и выбегом насосов мощность реактора с трудом поддерживалась на низком уровне (~20% от номинальной электрической). Температура воды на входе в реактор была близка к температуре насыщения.
Запас реактивности падал из-за «отравления» ксеноном. Чтобы поддержать мощность и довести эксперимент до логического конца, операторы практически все стержни СУЗ вывели из активной зоны (осталось в соответствии с записями на лентах ДРЕГ всего 2 стержня). Тем самым было нарушено важное для безопасности положение Регламента. Эксперимент почти закончили, реактор работал неустойчиво. Слышен был шум в насосном помещении (кавитационный грохот, с которым хорошо знаком эксплуатационный персонал, при нарушении оптимальных условий работы насосов). В насосную был послан оператор, чтобы выяснить, что там происходит. В этот момент, видимо, оператор реактора заметил небольшой рост мощности реактора, связанный с ростом количества пара в каналах (на входе в каналы вода практически с температурой насыщения; питательная, холодная вода в реактор не поступает). Ситуация напряженная, стержни автоматического регулирования мощности бездействуют. Принято вполне разумное решение остановить реактор «кнопкой» аварийной защиты. Все стержни защиты пошли вниз, в активную зону. Через две-три секунды вода была вытеснена из всех каналов СУЗ, введена положительная реактивность, достаточная для роста мощности нижней части активной зоны. Верхняя часть активной зоны снижает свою мощность, так как в неё вводятся поглощающие стержни (во всём реакторе в целом в первые 2-3 сек мощность могла снижаться). Однако нижняя часть а.з. продолжает разгоняться, так как реактор в какой-то степени разделен на две мало связанные друг с другом части вследствие двугорбости кривой распределения энерговыделения по высоте активной зоны. Практически уже к концу второй-третьей секунды ввода стержней СУЗ нейтронный «горб» в нижней части а.з. стал расти, стало возрастать количество пара в рабочих каналах. Начался разгон мощности реактора вследствие вытеснения воды из нижней части каналов СУЗ и положительного эффекта реактивности из-за роста количества пара в нижней части рабочих каналов, загруженных тепловыделяющим сборками (твэлами). Появление пара в нижней и средней части рабочих каналов (для начала кипения большого роста мощности не требовалось, т.к. вода находилась практически при температуре насыщения) привело к быстрому и полному выталкиванию воды из технологических каналов и замещению её паром (удельный объём пара примерно в 20 раз больше удельного объёма воды, т.е. нужно испарить одну двадцатую часть воды, чтобы вытолкнуть из канала всю воду). Произошел быстрый дополнительный (главный ) скачок реактивности, который вызвал разгон реактора на мгновенных нейтронах. Поглощающая часть стержней СУЗ к этому моменту вошла в активную зону всего на 1,5-2 метра и не препятствовала росту реактивности в нижней пятиметровой части активной зоны. Разгон мощности на мгновенных нейтронах в десятки, возможно, и сотни раз от номинала за первые 2-3 секунды «взорвал» твэлы нижней половины реактора.
Например, нейтронно-физические расчёты [1] свидетельствуют о вероятном росте мощности реактора до 100 номиналов к 7 сек аварийного процесса, причём с начала ввода стержней до 4-й-5-й сек мощность реактора в целом слегка снижается в течение 2-х сек (в основном снижается в верхней части активной зоны), затем сравнительно слабо возрастает до номинала к 5-й сек, а с 5-й до 7-й секунды рост составляет от 1-го до 100 номиналов. Причём рост мощности происходит в нижней половине реактора на участке активной зоны, в которую не вошли стержни СУЗ (номинальная тепловая мощность реактора составляет 3200 МВт, электрическая -1000 МВт). По оценке, за эти 2 сек в твэлах на участке максимальных нагрузок в нижней половине реактора может выделиться от 700до 1000 калорий на грамм топлива и до 35-50 калорий, но на б?льшую примерно в 6 раз массу, в графите (масса топлива в активной зоне примерно 190 тонн, графита без отражателей 1140 тонн). Однако следует отметить, что нейтронно-физический расчёт проведён с условием целостности твэлов в процессе роста мощности. Очевидно, что при таком темпе наброса нагрузки возможно разрушение твэлов ещё до выхода на мощность 100 номиналов с соответствующими нейтронно-физическими последствиями. Вероятна остановка роста мощности реактора вследствие прекращения цепной реакции в разрушенном, диспергированном и распространившемся по кладке топливе. Как сказано в препринте, «...программа отказалась работать из-за ошибок в теплогидравлическом блоке (т.е. параметры вышли за пределы)». Если бы программа продолжала считать и с перегретым паром, то можно было бы получить и 200-300номиналов? Вполне вероятно, если бы в программе были условия по влиянию на нейтронно-физические характеристики активной зоны возможного разрушения твэлов (и труб каналов), то темп роста мощности и её предельное значение были бы другими. Расчётный рост мощности остановился бы на меньшем значении. При фрагментации и диспергировании топлива осколки деления какое-то время остаются в гомогенной массе топлива с высокой температурой, а если и «вылетают» из топлива и активной зоны, то вылетят они вместе с «распылившемся» топливом и перегретым паром (вероятно, в графитовую кладку и в барабаны-сепараторы), т.е. в любом варианте рассмотрения ситуации должно произойти затухание цепной реакции. Одни осколки деления вылететь из активной зоны не могут.
2.3 О характере разрушения твэлов при росте мощности реактора
По данным специалистов, исследовавших поведение твэлов при резком набросе мощности, это результаты экспериментов в импульсном реакторе, уже при введении в топливо 300-400 кал/г энергии за 1-1,5 сек (на подъёме импульса) твэлы разрушаются на мелкие фрагменты. При введении в топливо 600 кал/г топливо превращается в раскалённую пыль за счёт вскипания диоксида урана и повышения давления газообразных осколков деления. Можно предполагать, что с момента наброса мощности, соответствующего энерговыделению в топливе от 400до 600 кал/г, возможно прекращение катастрофического роста мощности раньше достижения 100 номиналов.
Топливо при таких нагрузках могло нагреться за 1,5 - 2 сек, т. е. практически мгновенно, до 5000-7500°С (оценка проведена без отвода тепла и учёта теплоты плавления и испарения). Поэтому и диспергировало и испарилось топливо в зоне максимальных нагрузок, особенно если учесть рост объёма газообразных и легколетучих осколков деления (температура плавления диоксида урана примерно 2650°С, кипения -3730°С).
Температура графитовых блоков в зоне максимальных нагрузок адиабатически может возрасти в этих условиях примерно на 10-20°С, со стороны отверстия в блоке - раза а полтора больше. Выделяемая мощность в графите в нормальных условиях равна примерно 5 % от мощности, выделяемой в топливе, количество графита в ячейке примерно в 6 раз больше, а теплоёмкость графита почти в 4раза выше, чем теплоёмкость топлива; в условиях катастрофического роста мощности энерговыделение в графите меньше примерно на 15 %, чем в стационарных условиях, за счёт практически неизменной составляющей энерговыделения от запаздывающих ?-квантов деления. Именно в соответствии с отмеченными обстоятельствами рост температуры графита несопоставим с практически адиабатическим ростом температуры топлива, хотя этот результат может показаться неожиданным.
Таким образом, cледует, в соответствии с оценкой, принять, что температура графита в процессе роста мощности твэлов за 1,5-2 сек возросла незначительно.
2.4 Ход развития аварии Таким образом, можно, в соответствии с оценкой, принять, что температура графита в процессе роста мощности твэлов за 1-1,5 сек возросла незначительно.
В момент быстрого роста паросодержания и выброса воды из каналов все насосы прекратили подачу воды вследствие резкого повышения гидравлического сопротивления активной зоны. Раскалённая топливная «пыль» с паром (на фоне роста давления в активной зоне и в сепараторе с 70до 80-85 атмосфер и полного прекращения расхода в насосах) перегрела, в основном излучением и нагревом в момент роста мощности, циркониевые трубы технологических каналов до температур, при которых произошел их разрыв. Именно в это время слышались шум, рокот и вибрация, которые приняли за первый взрыв в центральном зале. Вода и пар с перегретой топливной «пылью» заполнили реакторное пространство. Разрушался и размывался горячий графит, температура которого к этому времени была порядка 350-400°С. В это время вероятно смятие труб каналов СУЗ внешним давлением и заклинивание стержней регулирования. Именно поэтому стержни СУЗ остановились все разом, войдя в активную зону примерно на 2 метра.
kust782 [ЛС] [>>]
Администратор


статус: Йа ацкей Коринь!!!!!!!
Репутация:
Сообщения: 9256

СообщениеДобавлено: Пн Окт 27, 2008 07:59   Цитата

После разрыва труб каналов расход по всем насосам (по записям на самописцах) возрос почти до номинала. Практически вся вода шла в графитовую кладку и из насосов, и из сепараторов и превращалась в пар за счёт нагрева графитом и самоиспарения вследствие падения давления (в этот момент давление в кладке было ниже давления в сепараторе, а вода находилась при температуре насыщения). Давление в пределах кожуха реактора возросло до значений, при которых была сорвана верхняя биологическая защита (схема «Е», «Елена»), разорваны вверху трубы каналов, отводящие теплоноситель, оборваны нижние трубы-калачи, подводящие воду к рабочим каналам. Под давлением просел (смят) нижний «крест» (схема «С»), на который опирается нижняя биологическая защита (схема «ОР»), тонкие листы креста не выдержали давления; были разорваны компенсаторы, герметизирующие реакторное пространство шахты реактора. Тепловой взрыв реактора был вторым взрывом, который слышал персонал. В этот момент разрушены верхние и нижние коммуникации, отводящие пароводяную смесь и подводящие воду к технологическим каналам, разрушены помещения насосов и барабанов-сепараторов. Вместе с паром и топливо- графитовой «пылью» в отверстие после подъёма и сдвига схемы «Е» была выброшена наружу, за пределы шахты реактора, часть графитовых блоков с кусками циркониевых труб и тепловыделяющих сборок. Находящийся снаружи здания реактора персонал (по докладным запискам) видел искры и раскаленные куски чего-то, напоминающие «горящие тряпки». Первая, начальная фаза чернобыльской трагедии, как не только я её представляю, закончилась.
Оставшаяся в шахте реактора б?льшая часть топлива и графита стала разогреваться за счёт остаточного энерговыделения продуктов деления в топливе. Охлаждающая вода в принципе уже не могла попасть в активную зону, так как все коммуникации были порваны. Графит нагрелся до 700-800°С и сам стал гореть (Облучённый графит на воздухе начинает гореть при температуре примерно 700-750°С в муфельной печи при электронагреве. Горение прекращается после отключения нагрева. В нашем случае горение поддерживалось остаточным энерговыделением в топливе и выделяемой энергией горения в компактном объёме, продуваемом воздухом). Температура горящего графита и циркониевых труб могла возрасти до 1500-1700°С. За несколько дней графит, циркониевые трубы, циркониевые оболочки твэлов (цирконий выгорел ещё раньше) практически выгорели полностью. Тяжелые фракции топлива в шахте реактора остались (некоторые эксперты утверждают, что там ничего не осталось), летучие и газообразные осколки деления урана оказались выброшенными в атмосферу.
Небольшая иллюстрация к пониманию взрыва реактора в условиях резкого наброса мощности в процессе разгона на мгновенных нейтронах. Американцы при обсуждении аварии на ЧАЭС, в Вене в августе 1986 года, демонстрировали видеозапись теплового взрыва: в бочку с водой вылили сравнительно небольшой «ушат» расплавленного металла. Кажется, это был чугун. Произошел взрыв, который разнёс в клочья и бочку, и сооружение из металлических конструкций, в котором размещалась бочка, а металл превратился в пыль. Эта картина в какой-то мере иллюстрирует ситуацию в момент попадания воды на раскалённый графит после разрыва циркониевых труб технологических каналов (тепловой взрыв). При этом вероятно разрушение и диспергирование части графитовых блоков. Мне же кажется, что эта модель взрыва менее подходит к пониманию взрыва твэлов на ЧАЭС в той его части, которая связана с катастрофическим ростом мощности твэлов в момент разгона на мгновенных нейтронах. Тут более подходит другая экспериментальная модель. Если в электрическую розетку на кухне (кухонный эксперимент и очень дешёвый) всунуть волнистую заколку для волос, то мгновенно раздастся лёгкий взрыв, металлическая заколка превратится в пылевую «сажу» (окисленный металл). Примерно такая картина разрушения твэлов в зоне максимальных тепловых нагрузоквероятна в момент роста мощности реактора на мгновенных нейтронах до десятков и сотни номиналов, в результате чего топливные таблетки из диоксида урана превратились в раскалённую пыль, за доли секунды нагрели трубы каналов, после чего произошел массовый разрыв труб в середине пятиметрового участка активной зоны (или несколько ниже середины), до которой ещё не дошли поглощающие нейтроны стержни СУЗ. Вероятно, катастрофический рост мощности мог вызвать и частичное разрушение (превращение в "пыль", в аморфную "сажу") графита, внутреннее энерговыделение в котором в нормальных условиях работы составляет примерно 5 % от общего энерговыделения в активной зоне, а перепад температуры по телу графитового блока составляет 30-60°С. В условиях резкого роста мощности, предположительно, определённую роль в частичном разрушении и диспергировании графита мог сыграть газ (азот, гелий), находящийся в скрытой и закрытой пористости графита, а также хемосорбированный азот, накопившийся в графитовой решетке. При резко введённой энергии, повысившей температуру графита (хотя и незначительно), и возросшем облучении нейтронами и гамма-квантами вероятен рост давления в порах графита и химическое соединение азота с углеродом с образованием газообразных соединений типа (СN)n с выделением дополнительной энергии.
Энергия осколков деления, гамма-излучения, замедления нейтронов-в графите-взорвала не только топливные таблетки, но и, частично, графит. Конечно, речь не идёт о росте температуры практически всего графита до 5-10тысячах градусов, как утверждают некоторые эксперты [2]. Просто для такого роста температур графита не найти энергии: твэлы, как источник энергии, развалятся в пыль и цепная реакция прекратится ещё до того как предполагаемая температура в графите будет достигнута.
Вода и пар хлынули в графитовую кладку со стороны насосов и со стороны барабанов-сепараторов. В раскалённую «пыль» превратилось не всё топливо, а только в зоне максимальных нагрузок. Большая часть ТВС и твэлов осталась сравнительно целой и не была выброшена из реактора. Этот вывод можно сделать, анализируя и изучая выброшенные наружу куски циркониевых труб ТК вместе с находящимися в них твэлами. Именно поэтому, по оценке специалистов, вне реактора оказалось порядка 3-х-5-ти процентов топлива, остальное топливо, включая тяжелые фракции, осталось в шахте реактора. Если рассуждать иначе, утверждая, что большая часть топлива выброшена двойным взрывом из реактора, то тогда следует объяснить, что же горело в шахте реактора? Какой раскалённый высокоактивный газ поднимался над шахтой разрушенного реактора на высоту более 300 метров (до 1000-1500метров) почти 10 дней? Если горел графит, то что же разогрело графит до температуры воспламенения (примерно до 700-750°С через 10-20часов после начала аварии) и поддерживало горение графита в течение восьми - девяти суток при температуре до 1500°С? Очевидно, что остаточное энерговыделение в топливе.
3. По следам публикации в журнале «Атомная энергия»
3.1 Анализа развития аварии вследствие кавитации ГЦН
Мои представления об аварии на 4-м блоке Чернобыльской АЭС были напечатаны в газете «Курчатовец» РНЦ «Курчатовский институт». Не бог весть какие неизвестные факты и новости я затронул, однако отзывы и критика появились. К 20-й годовщине трагедии появилась статья в журнале «Атомная энергия» [3], которая представляет взрыв 4-го блока ЧАЭС в совершенно фантастическом свете. По мнению авторов статьи, реактор взорвался от кавитационного срыва подачи теплоносителя всехГЦН. Появление пара только в нижней части активной зонывызвало разгон реактора на мгновенных нейтронах, разрушение твэлов от слишком высокой тепловой нагрузки и разрыв циркониевых каналов вследствие их перегрева. Ввод стержней аварийной защиты в активную зону с их положительным эффектом в первые секунды в этом случае не обсуждается.
После разрыва каналов и повышения давления в реакторном пространстве, занятом графитовой кладкой, после разрушения компенсаторов верхней и нижней тепловых защит (схемы Е и ОР) активная зона компактно (графит, трубы ТК с тепловыделяющими сборками, стержни СУЗ, каналы охлаждения отражателя вместе с кожухом реактора и схемой Е) вылетела из шахты реактора на манер ракеты и дополнительно взорвалась уже над шахтой реактора в пределах центрального зала. Всё взорвалось так, что в шахту реактора вернулась только «Елена», а всё диспергированное (разрушенное в пыль) топливо и диспергированный (sic!) графит и циркониевые трубы каналов вообще вылетели за пределы реакторного блока. Поэтому шахта реактора пуста не потому, что сгорел графит и циркониевые трубы каналов, а потому что графит, трубы каналов и топливо вылетели из шахты на раскалённых струях пароводяной и топливной смеси и окончательно разлетелись в виде пыли и осколков от последующего взрыва активной зоны вне шахты реактора. Гипотеза зловеще-красивая и принятая некоторыми писателями как реальность («Елена» летала по центральному залу как бабочка...» -было написано в одном эссе о чернобыльской катастрофе), однако вряд ли доказуема логикой развития аварии и нейтронно-физическими и теплотехническими расчётами или хотя бы оценками (например, какая энергия необходима для «диспергирования» графита и труб каналов почти всей активной зоны и откуда она могла поступить).
Представление о практическом отсутствии топлива в пределах шахты реактора и его помещений противоречит также многолетним исследованиям и оценкам количества топлива по радиационному излучению в пределах реакторных помещений и вне их. Следует также отметить, что кавитационный срыв подачи всех сразу ГЦН маловероятен (а он был таким на ленте расходов ГЦН), так как насосы имеют отличающиеся кавитационные характеристики и «сразу вместе» прекратить подачу теплоносителя не могут. На лентах самописцев этот процесс срыва ГЦН должен был бы быть растянут во времени. Поэтому прекращение подачи теплоносителя в реактор следует связать только с резким повышением давления во всей активной зоне, т. е. с ростом мощности, а не наоборот.
kust782 [ЛС] [>>]
Администратор


статус: Йа ацкей Коринь!!!!!!!
Репутация:
Сообщения: 9256

СообщениеДобавлено: Пн Окт 27, 2008 08:04   Цитата

Версии аварии: мемуары участника и мнение эксперта. Часть 3
Отметим также, что появление пара в нижней части активной зоны при кавитационном срыве ГЦН должно было бы вытолкнуть всю воду из активной зоны. В этом случае максимум энерговыделения при разгоне реактора был бы в центре активной зоны, а не в нижней её части.
Интересна ещё одна деталь, на которую стоит обратить внимание. Например, в случае аварийного разрыва напорного водовода и падения давления в активной зоне канального реактора «обезвоживание» активной зоны происходит за 2-3 секунды. Соответственно, за эти секунды стремительно растёт мощность реактора (в случае значительного положительного парового эффекта реактивности). Можно предположить, опираясь на концепцию взрыва реактора от кавитационного срыва подачи ГЦН, что с такой же скоростью росла и мощность 4-го блока. То есть уже к 2-й-3-й секунде процесса разгона произошло бы и разрушение твэлов, и разрушение циркониевых труб каналов. В условиях такого скоростного процесса (2-3 сек) у оператора просто нет времени на сброс аварийной защиты, а у «медленных, ленивых» стержней СУЗ нет времени на вхождение в активную зону на ту глубину, на которую стержни всё же вошли. Если проанализировать это обстоятельство детально, то станет ещё раз очевидно, что реактор взорвался от «кнопки», а не от кавитационного срыва подачи (воды) ГЦН.
3.2 Ещё один аргумент в пользу «кнопки»
Мне же представляется рассмотреть процесс развития аварии не на основе визуальной оценки отсутствия топлива в шахте реактора («сталкеры», перед которыми не грех склонить голову и преклонить колени за их мужество и отчаянное безрассудство, топлива в шахте реактора не видели), а на анализе (тоже визуальном) состояния выброшенного из реактора куска циркониевой трубы ТК вместе с куском тепловыделяющей сборки. (Когда-то Жорж Кювье считал, что по одной косточке миллионнолетней давности можно восстановить полный облик животного - хозяина этой косточки). Постараюсь логически показать, что это возможно, тем более через 20 лет после события, а не через миллион; тем более это проще, если имеешь дело с созданием рук человеческих, а не с созданием природы, которая куда как изощрённее и изобретательнее - времени на изобретения и совершенствования живого мира у неё было значительно больше, чем у человека с его техникой. Хотя не стоит и забывать, что барон Ж. Кювье, как стало ясно почти через 200 лет после его высказывания, в некоторых представлениях о животном мире Земли и посетивших её катастрофах всё же, видимо, ошибался.
Прежде чем начать рассматривать «косточку», хочу вспомнить ещё две аварийные ситуации на реакторах РБМК, которые могут быть интересны и читателям.
3.2.1 Авария на 1-м блоке ЧАЭС
В сентябре 1982 года произошел разрыв циркониевой трубы технологического канала (ТК) на 1-м блоке Чернобыльской АЭС при подъёме мощности реактора. Мощность реактора в момент разрыва была примерно 25% от номинала. В это время в помещении, где находятся запорно-регулирующие клапаны (ЗРК) каналов реактора, работали два оператора. Причина их присутствия: один канал не имел номинального расхода воды. Операторы должны были повысить расход при работе реактора на мощности (нарушение инструкций и регламента канальных реакторов; операции по регулированию расходов в каналах должны быть закончены до подъёма мощности реактора). Видимо, операторы ошиблись, так как расход в ТК был уменьшен, а не увеличен (злой умысел я исключаю). По расчётам, проведённым на основе анализа аварии, расход в ТК был снижен примерно до 0,4 - 0,5 т/час (вместо номинального около 20-24 т/час). Большая часть тепловыделяющей сборки (ТВС) находилась в режиме закризисной теплоотдачи и теплоотдачи перегретому пару, на выходе из канала температура перегретого пара могла быть до 700 - 800°С (вместо нормальной температуры пароводяной смеси примерно 285°С). Разрыв трубы произошел в верхней части активной зоны на участке графитовых втулок - колец твердого контакта, где максимальна температура трубы ТК (в соответствии с расчётами, которыми пришлось в то время заниматься, примерное время до разрушения трубы при таких температурах составляет соответственно 15-5 сек).
Разрыв трубы был продольным (и поперечным по краям продольного разрыва) с образованием разошедшихся «крыльев», расстояние между краями которых было больше диаметра трубы ТК. Выше и ниже разрыва диаметр трубы был увеличен на 2-4 мм за счёт ползучести циркония при высокой температуре. Осмотр и анализ разрушения позволил сделать вывод о том, что перед разрушением диаметр трубы из-за давления при высокой температуре увеличился, труба вязко-пластически деформировалась до разжатия колец твёрдого контакта и «легла» на графитовый блок, какое-то время «раздувалась» (были видны «затёки», выпуклости в прорези графитовых колец твердого контакта). Видимо, труба разрушилась после того, как лопнул графитовый блок (два графитовых блока), резко был изменён характер закрепления трубы в графитовом блоке. Трещина в блоке инициировала ускоренный (практически мгновенный) локальный рост напряжений в трубе при сравнительно небольшой общей деформации (около 3-5 Confused перегретого участка трубы. Края продольного разрыва были несколько утонены, толщина торцов трещины 2-3 мм в какой-то мере соответствовала скорости нагружения и исчерпанию предельной деформации материала трубы. Поперечные разрывы произошли при минимальном утонении толщины трубы. Возможно, перед разрывом возник и свищ в месте затекания трубы в разрез графитового кольца, где локальная деформация могла достичь десятков процентов.
Для циркония при высокой температуре такая деформация возможна: проявляется эффект сверхпластичности, когда удлинение образцов достигает значений 100 - 200 % и выше. При высоких температурах 700-850 °С появляется сильная зависимость как прочности, так и пластичности от скорости деформирования.
Реактор не имел аварийной защиты от сигнала повышения давления в межтрубном (реакторном) пространстве, поэтому достаточно длительное время пароводяная смесь обратным током из барабана-сепаратора с температурой около 285°С под большим давлением поступала в графитовую кладку, размывая и разрушая графитовые блоки. В результате рядом с трубой образовалась полость. Перегретая б?льшая часть ТВС, температура оболочек твэлов в которой превышала 600-800°С, была разрушена. Топливо выносилось в барабан-сепаратор (пока труба не разорвалась, то-есть сравнительно короткое время) и графитовую кладку (после разрыва трубы). Нижняя часть ТВС на экономайзерном участке, достаточно охлаждаемая и не попавшая в режим кризиса теплоотдачи, длиной около метра, осталась практически целой. Именно эта часть ТВС, внешне абсолютно целая, с правильно расположенными дистанционирующими решетками была поднята потоком воды вверх и двойным потоком (снизу и сверху из сепараторов) аккуратно, чётко вертикально «вставлена» в пространство, вымытое водой в графите. В самой трубе не было обнаружено ни кусочка твэлов, извлечена была только подвеска с верхним стальным концевиком. В первый момент было потрясающе неожиданно вдруг увидеть в разрыве совершенно целую ТВС, стоящую рядом!.. с трубой ТК.
Мощный поток воды вверх возник после того, как операторы раскрыли ЗРК и дали номинальный расход в канал (как мне рассказывал об этой аварии сотрудник станции, только через несколько лет один из операторов сознался, какие манипуляции они проводили с ЗРК).
Исследование трубы ТК в горячей камере, включая изучение структуры образцов металла (в ОИРТе института Курчатова), показало, что температура трубы на участке разрыва составляла 700 -800°С.
Время подъёма мощности реактора до 20-25% (примерно с 250 до 700МВт тепл.) составляло около 10 - 15минут. Сколько времени был перекрыт канал, установить трудно, однако очевидно, что б?льшую часть этого времени труба ТК была уже разрушена, так как потоком пароводяной смеси была «вымыта» большая полость в графите, в которую попал практически целый фрагмент ТВС длиной почти 1 метр.
3.2.2 Авария на 3-м блоке ЛАЭС
Примерно такой же сценарий аварийного режима реализовался на реакторе РБМК-1000 в марте 1992года на 3-м блоке Ленинградской АЭС. Мощность ректора была стационарной и номинальной. Как показало расследование аварии и последующий её расчётный анализ, расход воды в канал был частично перекрыт из-за разрушения крепежных элементов седла запорно-регулирующего клапана; расход воды остался, но значительно меньше номинального. Твэлы находились в режиме закризисной теплоотдачи и теплоотдачи перегретому пару. На выходе канала был перегретый пар до 700 - 750°С. Труба разорвалась продольно и поперечно в верхней части канала на верхнем участке втулок-колец твердого контакта. Разрыв почти аналогичен тому, который произошел на 1-м блоке ЧАЭС. Часть разрушенных твэлов была вынесена в барабан-сепаратор и в графитовую кладку (большая часть в кладку - после разрыва трубы ТК). Реактор был остановлен аварийной защитой по сигналу повышения давления в реакторном пространстве. Сработала также предупредительная сигнализация по снижению расхода в канале. Оставшаяся целой нижняя часть тепловыделяющей сборки возросшим потоком теплоносителя (уменьшилось гидравлическое сопротивление канала) была «просунута» и загнута!.. в разрыв трубы и застряла в нём (на этот раз свободного места рядом с трубой явно не хватило, так как не хватиловремени на «размыв» графита, хотя очевидно, что даже за такое короткое время часть графита была размыта). (Кстати, по-моему, это единственная серьёзная авария на канальных уран-графитовых реакторах, не связанная с ошибочными действиями персонала или нарушением регламента. Были ещё существенные разрывы напорных трубопроводов на проточных промышленных реакторах в первые годы их эксплуатации, не связанные с нарушением инструкций и регламентов, однако, к счастью, это случалось на остановленных реакторах в период их плановых ремонтов и не имело серьёзных радиационных последствий).
kust782 [ЛС] [>>]
Администратор


статус: Йа ацкей Коринь!!!!!!!
Репутация:
Сообщения: 9256

СообщениеДобавлено: Пн Окт 27, 2008 08:07   Цитата

3.3 Анализ и обсуждение аварийных ситуаций
В этом анализе аварийных ситуаций нас в большой мере должен интересовать такой очевидный факт: твэлы разрушаются от перегрева на фрагменты и выносятся в барабан-сепаратор и, в основном, в графитовую кладку. Довольно быстро размывается и графит перегретым паром в ближайшей к разрыву зоне и превращается, вероятно, в мелкодисперсную «пыль». Разрушается при перегреве и циркониевая подвеска тепловыделяющих кассет. Оставшаяся более-менее целая часть ТВС потоком воды или пароводяной смеси может быть перемещена в разрыв трубы или другую часть технологического канала. Б?льшая часть разрушенных твэлов остаётся в графитовой кладке.
Теперь посмотрим на «косточку» из 4-го блока ЧАЭС внимательным взглядом. Фрагмент циркониевой трубы ТК длиной примерно 1 метр, заполненный полуразрушенными твэлами, подобран на крыше около реактора. Труба - с трещинами и деформирована. Один торец трубы - разрыв в пределах нижнего стального переходника с уменьшенным диаметром по сравнению с диаметром циркониевой трубы (разрыв по стальному переходнику ниже активной зоны, т. е. фрагмент трубы соответствует нижней части активной зоны и нижнего отражателя). С этого торца видны концы разрушенных твэлов с таблетками топлива, втиснутые в уменьшенный диаметр стального переходника. Другой торец -хрупкий разрыв по цирконию, труба деформирована, твэлы в глубине трубы. Найдена маркировка трубы - канал 25-17, это край плато активной зоны юго-западного квадранта. Мощности каналов в этом месте активной зоны практически максимальны. (Исследования проводились в Курчатовском институте в ОИРТе, вся документация и материалы исследования у к. т. н. А. В. Рязанцевой). Поперечные разрезы трубы показали, что внутри находятся полуразрушенные твэлы, циркониевые оболочки сплавлены, охрупчены и окислены от перегрева, таблетки (топливо) высыпаются. Внимание привлекают концы твэлов, застрявшие в переходнике - это явно не концы нижней тепловыделяющей кассеты. [Тепловыдаляющая сборка (ТВС) состоит из двух тепловыделяющих кассет длиной примерно 3,5 м ( ТВК), на концах которых сверху и снизу ТВС находятся крепёжные детали -массивные стальные хвостовики, в которых крепятся твэлы, а вся ТВС крепится на циркониевой подвеске, которая выше активной зоны переходит в стальную подвеску]. Так вот, если бы в трубе находились нижние твэлы, то в переходнике застрял бы нижний хвостовик. Его нет. Вывод: нижняя кассета вместе с хвостовиком и нижняя часть верхней кассеты после разгона реактора на мгновенных нейтронах, перегрева и разрушения твэлов и разрушения труб каналов водой и паром была выброшена в графитовую кладку.
(В момент разгона мощности на участке максимальных нагрузок в активной зоне осевое поле энерговыделения в пределах 4-5-ти нижних метров примерно косинусоидальное, в верхних двух-трёх метрах активной зоны тепловые нагрузки существенно меньше или практически отсутствуют, так как успели войти поглощающие нейтроны стержни СУЗ, которые, скорее всего, были все заклинены в момент роста давления в межтрубном пространстве и смятия труб ТК СУЗ).
В этот момент разгона резко поднялся перепад давления в каналах реактора, расход на всех ГЦН снизился до нуля (по лентам самописцев), обратные клапаны закрылись. Примерно через 2-3 сек расход ГЦН стал восстанавливаться (после разрыва труб ТК и заполнения графитовой кладки водой, паром и разрушенными твэлами) и возрос выше номинального через 2-3 сек (дальше записи обрываются). Именно в эти секунды вода из ГЦН, которые продолжали вращаться, выносит остатки нижних твэлов вместе с хвостовиком в разрывы труб ТК в графитовую кладку реактора. Через несколько долей секунд (или секунд) происходит срыв подачи насосов (кавитационный срыв вследствие падения давления на ГЦН из-за разрыва труб ТК). Мощный поток теплоносителя остаётся только сверху из барабанов-сепараторов (там б?льший запас воды и ещё поддерживается высокое давление). Именно он отрывает и «вгоняет» часть неразрушенной полностью верхней кассеты в нижний стальной переходник канала (оболочки твэлов охрупчены и вполне вероятен их обрыв потоком пароводяной смеси из барабанов-сепараторов; твэлы с двух сторон в выброшенной трубе не имеют концевых заглушек). В этот момент времени уже оторваны нижние калачи каналов вблизи переходников сталь-цирконий и основной поток теплоносителя (уже без диспергированного топлива твэлов, оно выброшено в кладку) направлен не только в кладку, но и вниз по направляющему каналу - ещё целой нижней части трубы ТК, под реактор, где давление ещё почти атмосферное.
Иначе этот кусок кассеты был бы выброшен в кладку, а не втиснут в стальной переходник трубы ТК.
Только после разрушения труб каналов и роста давления в активной зоне и реакторном пространстве возникли условия для разрушения самого реактора: за счёт повышения давления в пределах кожуха (за счёт заполнения графитовой кладки с температурой 300-400°С пароводяной смесью и раскалённым разрушенным топливом) происходит его разрыв; затем повышается давление в герметичном реакторном пространстве и деформация («раздувание») металлоконструкций реактора (осмотр показал, что деформированы заполненные водой баки биологической защиты, схема Л); под давлением проседает крест схемы С, рвутся компенсаторы верхней и нижней биологических защит -схемы Е и ОР, опускается схема ОР (нижняя биологическая защита, несущая активную зону; схема С не выдерживает ударной нагрузки), поднимается и отрывается схема Е (верхняя биологическая защита), которая обрывает трубы пароводяных коммуникаций. В момент «проседания» схемы С вместе со схемой ОР и в момент подъёма и сдвига схемы Е (вероятнее всего этот процесс проходил одновременно, иначе произошло бы что-то одно, так как следствием разрыва верхнего или нижнего компенсаторов должно было бы быть падение давления в РП и торможение разрыва одного из них) произошел выброс раскалённой пароводяной и топливно-графитовой смеси в открывшуюся «дыру» при сдвиге схемы Е, а вместе с ней выброс кусков кожуха и графитовых блоков отражателя и периферийных графитовых блоков активной зоны вместе с остатками циркониевых труб ТК и твэлов в них, последующее разрушение и обрушение конструкций центрального зала, падение многотонной перегрузочной машины (РЗМ) и мостового крана.
Вследствие «проседания» схемы ОР, разрыва компенсаторов (в этот момент происходил также отрыв труб охлаждения отражателя) и разгерметизации нижней части реакторного пространства произошел выброс раскалённой смеси вместе с частью фрагментов разрушенного топлива и «размытого» паром графита в помещения нижних коммуникаций реактора, что привело к их разрушению, а в дальнейшем - к разрушению стен помещений главных циркуляционных насосов, барабанов - сепараторов и других помещений реактора. В результате парового «взрыва» герметичного реакторного пространства, его разгерметизации и последующего выброса пароводяной и топливо-графитовой смеси вместе с частью состава активной зоны за пределы шахты и центрального зала реактора было выброшено (по оценке специалистов -исследователей аварии 4-го блока) около 5% топлива (целых и «размытых» графитовых блоков, в большей мере отражателя, выброшено было больше, ими были буквально завалены соседние крыши станции). Большая часть топлива и графита, особенно зоны малых тепловых нагрузок периферии и верхней части активной зоны, осталась в шахте реактора на схеме ОР. Последующий разогрев графита остаточным энерговыделением в топливе привёл к возгоранию графита и его полному выгоранию. Для горения графита возникли благоприятные условия: воздух поступал через разрушенные помещения нижних коммуникаций и отверстия под каналы в схеме ОР, а раскалённые газы и высокоактивные продукты деления (газообразные, испаряемые и легколетучие) выходили в разрыв и проходы между схемой Е и баками тепловой водяной защиты (схемы Л) и поднимались на сотни метров над развалом реактора в течение 8-10 суток, пока горел графит. После сгорания графита и остатков труб ТК схема Е перевернулась под тяжестью конструкций и фрагментов стен центрального зала, песка и прочих сброшенных с вертолёта материалов, а также выброшенных в момент взрыва в центральный зал графитовых блоков и фрагментов труб ТК и твэлов (именно тех фрагментов, которые находились на схеме Е). Конечно, выброшенные фрагменты активной зоны в первой фазе аварии и находившиеся на схеме Е до момента её переворота не могли испытать длительный режим высоких температур, когда упали на схему ОР, так как горение графита к этому времени практически закончилось. На схеме ОР в настоящее время вместе с разрушенными металлоконструкциями центрального зала, как мне представляется, должны «покоиться» остатки циркониевых и стальных участков труб периферийных ТК, вывернутых вверх потоком перегретого пара и с которых этим потоком были сорваны графитовые блоки. После переворота схемы Е они также не должны были сгореть. Там же должны находиться практически все стальные блоки тепловой защиты, которые располагались под и над графитовыми колоннами, и стальные трубы каналов охлаждения отражателя. (Каналы охлаждения отражателя в момент резкого подъёма мощности не должны быть разрушены, так как они без топлива. Они были оборваны в момент подъёма схемы Е и смятия схемы С с опусканием схемы ОР). Там же должны находиться практически все стальные части подвесок ТВС с защитными пробками ТК (возможно, внутри схемы Е). В общем, на схеме ОР должно находиться столько разрушенных конструкций, несгораемых, несгоревших и нерасплавленных остатков активной зоны реактора, что обнаружить топливо визуально весьма проблематично, особенно если учесть значительную часть топлива, которое «утекло» вместе с расплавленным песком и другими сброшенными с вертолёта материалами. Часть из них всё же попала в шахту реактора и превратилась в лавообразные топливосодержащие массы (например, в «слоновую ногу» -застывший столб лавы, или застывшую струю расплава в парораспределительном коллекторе). Без длительных высоких температур лавообразные растёкшиеся массы, объёмы которых значительны, вряд ли могли бы образоваться!
Так что, по моему, «косточка» свидетельствует о последовательности развития аварии, близкой к изложенной выше.
kust782 [ЛС] [>>]
Администратор


статус: Йа ацкей Коринь!!!!!!!
Репутация:
Сообщения: 9256

СообщениеДобавлено: Пн Окт 27, 2008 08:09   Цитата

При взрыве активной зоны вне шахты реактора стальной хвостовик ТВС должен был бы находиться в «косточке» - в выброшенном куске трубы с твэлами.
4. Заключение
Уверен, что мало оснований говорить о том, что большая часть топлива 4-го блока реактора РБМК-1000 выброшена за пределы реактора в результате мифического взрыва и испарения активной зоны вне шахты реактора на высоте 15-30 метров от пола центрального зала. Тут впору вспомнить скорее другого барона с его занимательными историями.
Идея (гипотеза) взрыва активной зоны вне шахты реактора 4-го блока ЧАЭС опубликована в журнале «Атомная энергия», том 100, вып. 4, апрель 2006 г.[3] и в недавней книге НИКИЭТ [4]. Фантастическая гипотеза без достаточного расчётного нейтронно-физического и теплофизического обоснования перекочевала в серьёзную и полезную книгу о реакторах РБМК.
Если ещё с большой натяжкой можно говорить о вероятности компактного «выпрыгивания» всей активной зоны из шахты реактора в результате локального роста давления вблизи схемы ОР у «подошвы» активной зоны (ружейный пыж; в нашем случае это не пассивный «пыж», а «активный», внутри которого шли теплогидравлические процессы почти взрывного характера), то у авторов гипотезы нет никаких веских нейтронно-физических (реактивностных) и даже логических (на уровне рассуждений) аргументов о возможности дополнительного мгновенного роста реактивности и тепловой мощности в этой «выпрыгнувшей» активной зоне, ставших причиной взрыва и превращения в раскалённую «пыль» всей активной зоны вне шахты реактора на высоте 15-30 м от пола центрального зала (тут в пору говорить о ядерном взрыве). Ведь значительной части разрушенного топлива, скорее всего, в каналах при подъёме активной зоны уже не останется: оно будет вынесено вниз через оборванные нижние подводящие трубы каналов (НВК), в процессе самого подъёма, причём основная часть не разрушенного топлива будет находиться в верхней части графитовой кладки. Стержни СУЗ будут заклинены внутри активной зоны из-за смятия труб каналов СУЗ в момент роста давления в межтрубном пространстве активной зоны и не могут «вывалиться» из «вылетевшей» активной зоны. (Стержни СУЗ все враз остановились через несколько секунд после их сброса, что можно объяснить только их заклиниванием из-за смятия труб, которые в момент роста мощности могли дополнительно нагреться и потерять устойчивость вследствие роста давления). Поэтому нет оснований ожидать дополнительного роста реактивности в поднятой на 30 метров всей активной зоне с последующим взрывом и диспергированием всей активной зоны.
Появление публикаций о взрыве активной зоны 4-го блока ЧАЭС вне шахты реактора напоминает библейскую легенду о Моисее, который водил евреев по пустыне 40 лет, чтобы избавить их от духа (синдрома) египетского рабства (чтобы умерли все свидетели и носители рабства), чтобы возникла из разрозненных племён единая, сплочённая и жизнеспособная нация. Так и в нашем трагическом, но локальном случае: видимо, единое мнение о причинах и развитии аварии на ЧАЭС появится ещё только через 20 лет, когда уйдут в мир иной участники тех событий, свидетели, «ликвидаторы» и «организаторы» чернобыльской катастрофы. Хотя... Энтузиасты уже сто лет спорят о природе Тунгусского метеорита (болида, ледяной кометы и пр.). Уж очень хочется найти следы пришельцев.
На самом деле, «у нас есть историки, но нет истории» - гипотеза-то в серьёзной книге по РБМК [4] может остаться в головах нескольких поколений, прочитавших книгу.
В. М. Федуленко
kust782 [ЛС] [>>]
Администратор


статус: Йа ацкей Коринь!!!!!!!
Репутация:
Сообщения: 9256

СообщениеДобавлено: Пн Окт 27, 2008 08:12   Цитата

Источники
1. М. Н. Бабайцев, Е. В. Бурлаков, А. В. Краюшкин. Анализ аварии на 4-м энергоблоке Чернобыльской АЭС. Препринт РНЦ «КИ», ИАЭ-6416/4, Москва, 2006 г.
2. П. А. Платонов. О процессе разрушения активной зоны реактора IV блока ЧАЭС (Ретроспективный анализ экспериментов и фактов). Препринт РНЦ «КИ», ИАЭ-6486/11, Москва, 2006 г. (Препринт посвящён памяти Ф. Ф. Жердева, изучавшего распределение радионуклидов во фрагментах графитовых блоков, выброшенных из реактора).
3. Черкашов Ю.М., Новосельский О.Ю., Чечеров К. П. Исследование развития процессов при аварии на чернобыльской АЭС в 1986 г.
4. Канальный ядерный энергетический реактор РБМК. Москва, ГУП НИКИЭТ, 2006 г.
kust782 [ЛС] [>>]
Администратор


статус: Йа ацкей Коринь!!!!!!!
Репутация:
Сообщения: 9256

СообщениеДобавлено: Пн Окт 27, 2008 08:24   Цитата


Въезд в "запретную зону" Чернобыля. Фото AFP
Жертвы Чернобыля
Эксперты по-прежнему не могут назвать точное количество пострадавших от взрыва реактора на ЧАЭС
Последствия чернобыльской катастрофы затронули миллионы человек на Украине, в Белоруссии, в других странах Европы. Десятки человек погибли уже через несколько недель, сотни и, возможно, тысячи - в течение последующих лет. Однако точных данных о количестве пострадавших нет до сих пор, так как выкладки различных агентств и статистических управлений разнятся порой весьма значительно.
В первую очередь бросаются в глаза разночтения в данных о количестве погибших. Это связывают с тем, что многие из участников дезактивации зараженной территории погибли позднее и от естественных причин, не связанных напрямую с чернобыльской катастрофой. В этом и кроется опасность, считают эксперты, так как выявить влияние радиационного облучения на организм человека с течением времени сложно. Это особенность действия радиации.
Советскими исследователями установлено, что в момент взрыва и через некоторое время после него на Чернобыльской станции находились 237 человек (технический персонал АЭС, подразделения пожарной охраны). Все они получили значительные дозы радиационного облучения. У 134 из них была зафиксирована острая лучевая болезнь. 28 сотрудников станции умерли в первые три месяца после случившегося, еще 14 -в течение последующих десяти лет. К ним необходимо прибавить еще троих людей, погибших в момент взрыва на четвертом энергоблоке (один из них умер от сердечной недостаточности). Таким образом, получается цифра в 45 человек, которые погибли непосредственно в результате катастрофы.
В 2000 году Научный комитет по действию атомной радиации ООН распространил данные собственных подсчетов, в которых фигурирует цифра в 50 погибших. Однако она тоже приблизительная, хотя, вероятно, и не далека от реальной.
В сентябре 2005 года Международное агентство по атомной энергии, Всемирная организация здравоохранения и представители ООН провели форум, посвященный подлинным масштабам чернобыльской катастрофы. По их данным, от острой лучевой болезни умерли 50человек из числа так называемых ликвидаторов взрыва на ЧАЭС, и еще 9 погибли от рака щитовидной железы. То есть количество погибших достигло 59 человек.
Также, согласно исследованиям международных организаций, общее число погибших от облучения радиацией может составить еще 3940 человек. Такое потенциальное количество выведено на основе расчетов экспертов. В группу риска попали персонал ЧАЭС, участники ликвидации последствий аварии, эвакуированные люди и население пораженных территорий; количество смертей взято из соотношения известных случаев летального исхода от заболеваний раком и лейкемией и статистического прогноза, основанного на размере полученной дозы. Эта цифра соответствует результатам исследований советских ученых, проведенных в 1986 году.
Не совсем ясен и вопрос с количеством ликвидаторов последствий взрыва реактора. Сразу же после катастрофы на место стали перебрасывать военнослужащих, резервистов, после появились и добровольцы. Вероятно, поэтому число людей, участвовавших в дезактивации зараженного пространства вокруг разрушенного реактора и окружающей местности в 1986-1987годах, варьируется от 200 до 800тысяч человек. По мнению экспертов из ООН, в категорию ликвидаторов попадает 227 тысяч человек, остальные - это переселенцы, эвакуированные из опасных территорий. По данным официальной статистики России, Белоруссии и Украины за 1996 год, к ликвидаторам принято относить 200 тысяч человек (в российском регистре ликвидаторов числится 187415 человек, по другим данным -179 тысяч). В первый день аварии наибольшие дозы радиации получили около тысячи человек, находившихся вблизи реактора. Из общего числа ликвидаторов от воздействия радиации потенциально могут умереть 2,2 тысячи человек. Напомним, что это данные Научного комитета по действию атомной радиации ООН.
kust782 [ЛС] [>>]
Администратор


статус: Йа ацкей Коринь!!!!!!!
Репутация:
Сообщения: 9256

СообщениеДобавлено: Пн Окт 27, 2008 08:27   Цитата


Житель "зоны отчуждения" -самосел. Фото AFP

По сведениям Российской академии медицинских наук, из 61 тысячи ликвидаторов, которые получили среднюю дозу облучения и были обследованы в период с 1991 по 1998 годы, умерли 230 человек, что не превышает аналогичный показатель в среднем по России, а следовательно, не свидетельствует о воздействии радиации. Скачок болезней среди этой группы граждан был зафиксирован в первые десять лет после аварии на ЧАЭС, с 1997 года он пошел на спад. Облучение выше среднего зафиксировано только у 35 тысяч (17 процентов) ликвидаторов. А это, по мнению российских академиков, значит, что цифра предполагаемой смертности (почти 4 тысячи человек), которая была зафиксирована на международном форуме, завышена в 2-3 раза.
Однако не все доверяют и этим данным, считая, что они занижены на несколько порядков, так как принято считать, будто последствиями радиационного облучения является только лучевая болезнь. Остальные последствия для здоровья человека и его репродуктивных функций не учитываются. Например, одним из выводов международного форума стал такой: "Дозы общего облучения, полученного большинством ликвидаторов и гражданским населением, проживающим на зараженных территориях, невелики и сопоставимы с естественным фоном. В результате этого, не было обнаружено никаких свидетельств, прямо или косвенно указывающих на снижение репродуктивной способности пораженного населения или на повышение числа врожденных уродств, связанных с радиационным облучением".
Кстати, министерство здравоохранения Украины подсчитало, что из-за воздействия радиации к 1994 году умерло более 124 тысяч человек. А с влиянием аварии на ЧАЭС связана гибель 532 украинских ликвидаторов только за 2003 год.
По данным МАГАТЭ, общее количество людей, получивших высокие дозы облучения, достигает более 600 тысяч человек (586 тысяч -по другим данным). Помимо ликвидаторов, это переселенные жители 30-ти километровой зоны отчуждения (район города Припяти, окрестные деревни и области - Житомирская, Черниговская, Киевская) - всего 116тысяч человек (цифра варьируется от 115 до 135 тысяч, что, очевидно, связано с несколькими этапами вывода гражданского населения из зараженной территории), и 270 тысяч жителей из наиболее загрязненных радиацией местностей. Однако в более ранних публикациях МАГАТЭ за 1996 год можно встретить несколько другие показатели количества людей и уровня их облучения: около 200тысяч ликвидаторов получили средние дозы радиации и только 20 тысяч - выше среднего и высокие, несколько десятков человек -смертельные дозы. Менее десяти процентов из зоны отчуждения (то есть более 10 тысяч человек) получили минимальные дозы облучения, около пяти процентов -средние.
Исследователи агентства подсчитали, что общее количество эвакуированных составило более 350 тысяч человек. Из них более 96тысяч были вывезены с территории Украины, 135 тысяч - из Белоруссии.
По сведениям МАГАТЭ, численность населения в Белоруссии, Украине и России, в данный момент проживающего на зараженной территории, составляет около пяти миллионов человек. Около ста тысяч человек находятся на территориях, которые в советское время были признаны зонами особого контроля. Десять лет назад тот же источник приводил цифру в 400 тысяч человек, места проживания которых требовали дезактивации и ограничений на употребление продуктов местного производства. В Белоруссии, на которую пришлось почти 70процентов всех материалов радиоактивного выброса, около 20 процентов населения (почти 2,2 миллиона человек) проживают на территории с невысоким уровнем загрязнения. По данным германо-французской исследовательской группы, более семи миллионов человек по-прежнему живут в районах с загрязненной радионуклидами почвой.
В 1996 году МАГАТЭ писало, что "запретная зона" в настоящее время расширена и составляет 4300квадратных километров. В 2003году газета "Известия" отмечала, что зону отчуждения увеличили, но только до 2540 квадратных километров, и теперь она включает 65 поселений. Сегодня в Чернобыльском районе проживают 2,3 миллиона человек. В зоне усиленного радиационного контроля - почти 1,6 миллиона. Недалеко от законсервированного энергоблока живут 400 человек.
Урус [ЛС] [>>]
Модератор


статус:
Репутация:
Сообщения: 4328

СообщениеДобавлено: Пн Окт 27, 2008 11:53   Цитата

Интересно конечно, но цифры занижены этО факт! Я не помню сколько ликвидаторов ездило со Свердловска, ныне Екатеринбурга, но многие умерли в течений 2-3х лет! Некоторые, кто вернулся от туда не прожили и полугода! Щас я не знаю сколько ликвидаторов той катастрофы осталось, но около десятка точно и то живут на лекарствах! Ну а об остальном говорить наверно нет смысла, наверняка многие знают про их жизнь в такой стране как наша!
Показать сообщения:   
Новая тема   Ответить    Категории -> Новости RUнета  
Страница 1 из 1

 
Перейти:  

Интересное
. .

Сейчас на сайте

SinDr7sl , Гостей :27



.
Онлайн: 1




.

наверх